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Abstract. Theoretical predictions show that at low values of the Bjorken parameter x the spin structure
function, g1, is influenced by large logarithmic corrections, ln2(1/x), which may be predominant in this
region. These corrections are also partially contained in the NLO part of the standard DGLAP evolution.
Here we calculate the nucleon structure function, g1, and the gluon distribution, ∆g, using the unified
evolution equations written for the singlet and the non-singlet parton distributions. These equations include
(i) the terms which describe the NLO DGLAP evolution and (ii) the ladder and non-ladder terms which
contribute to the resummation of ln2(1/x). Subtractions of singularities from the evolution kernels are
performed so as to avoid double counting the double logarithmic contributions coming from the NLO
DGLAP and the ladder and non-ladder terms. The sensitivity of the results to the factorization scheme
applied is tested by introducing the DGLAP terms into the evolution equations at two different factorization
schemes.

1 Introduction

The discrepancy between the theoretical expectations and
the experimental data for the polarized proton has been
often referred to as the “puzzle of the proton spin”. This
problem has been attracting the attention of the high-
energy community since many years. The data obtained in
1988 by the EMC collaboration [1] showed that the total
participation of the quarks in the proton spin was very
small. This contradicted theoretical predictions, obtained
from the well-founded Ellis–Jaffe sum rule. That sum rule
connected the moments of the quark distributions to the
nucleon axial coupling constants. Following that rule, the
quarks should participate in about three-fifth of the total
nucleon spin with the parton quark model.

New experiments emerge, and they will possibly help
explaining the puzzle of the nucleon spin. The data from
the region of low values of the Bjorken parameter x, x <
10−3, will be of special importance. Theoretical predic-
tions show that at low x the structure function, g1(x, Q2),
is influenced by large logarithmic corrections, ln2(1/x)
[2, 3]. As a consequence, large contributions to the mo-
ments of the structure functions from this region are ex-
pected. Including the region of low x into the experimental
analysis will improve the estimation of the parton contri-
butions to the nucleon spin. This will lead to a better
understanding of the spin components of the nucleon.
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Analysis of the nucleon structure function at low x,
including the resummation of the logarithmic corrections,
was performed in [2–9]. In [4,9–12] these logarithmic cor-
rections were introduced for the unintegrated parton dis-
tributions. The recursive equations for their resummation
were then formulated. Afterwards, the DGLAP evolution
kernels calculated at the LO accuracy [4, 10] were added
to these equations. That was neccessary to achieve an ac-
curate description of the structure functions in the region
of moderate and large values of x. Recently, the evolution
equations for the non-singlet component of g1 have been
completed with the NLO DGLAP terms [9].

In this study we consider both the singlet and the non-
singlet component of the nucleon structure function, g1. In
the singlet part we consider the NLO DGLAP evolution
for the singlet quark component of g1, ∆Σ, and for the
gluon distribution, ∆g. In order to calculate ∆Σ and ∆g,
we formulate the unified evolution equations for the un-
integrated parton distributions. These equations include
the double logarithmic corrections, ln2(1/x), and the NLO
DGLAP terms calculated in the MS factorization scheme.
Following [9], subtractions of singularities are performed
at the evolution kernels, so as to avoid double counting
between the ladder and non-ladder terms and the NLO
ones in the overlapping regions of the phase-space.

Since the singlet quark distribution, ∆Σ, is a scheme-
dependent quantity [13, 14], the choice of the factoriza-
tion scheme influences its evolution. The scheme depen-
dence disappears for the function g1 if calculated with the
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standard DGLAP evolution equations. Here, the unified
equations contain the extra ladder and non-ladder terms
(∼ lnm(1/x)), and g1 obtained with the unified equations
may be scheme dependent. Therefore we formulate the
unified evolution equations also in an alternative factor-
ization scheme (the JET/CI scheme at the NNLO accu-
racy [15,16]). We then compare the results obtained from
these two approaches for g1 and ∆g. Finally, our conclu-
sions are listed.

2 Parton distributions
and the DGLAP evolution

The standard DGLAP equations written for the evolution
of the integrated singlet parton distributions are

d
d lnQ2 ∆qS(x, Q2) = α̃s(Q2) (∆P̂ ⊗ ∆qS)(x, Q2), (1)

where

∆qS =

(
∆Σ

∆g

)
is a vector consisting of the singlet quark component,
∆Σ =

∑
q (∆q + ∆q̄), and of the polarized gluon dis-

tribution, ∆g, with

α̃s(Q2) ≡ αs(Q2)
2π

.

These equations transform to the following integral equa-
tions:

fS(x, Q2) = α̃s(Q2)(∆P̂ ⊗ ∆q
(0)
S )(x)

+α̃s(Q2)
∫ Q2

k2
0

dk2

k2 (∆P̂ ⊗ fS)(x, k2), (2)

if we introduce the unintegrated parton distributions.
These distributions,

fS =

(
fΣ

fg

)
,

are defined by

∆qS(x, Q2) = ∆q
(0)
S (x) +

∫ Q2

k2
0

dk2

k2 fS(x, k2), (3)

with ∆q
(0)
S (x) describing the contributions coming from

the non-perturbative region, Q2 < k2
0. The cutoff k2

0 is
usually ∼ 1 GeV2. The matrix ∆P̂ is

∆P̂ =

(
∆P S

qq 2Nf∆Pqg

∆Pgq ∆Pgg

)
; (4)

it contains the splitting functions as calculated for the po-
larized deep inelastic scattering. The constant Nf denotes

the number of active flavors. Here, Nf = 3. The symbol
⊗ denotes the integral convolution of the two functions f
and g,

(f ⊗ g)(x) =
∫ 1

0
dy

∫ 1

0
dz δ(x − yz) f(y) g(z). (5)

The equations for the NLO DGLAP evolution of the
non-singlet fNS and ∆qNS are similar to (1). They were
described in detail in [9].

A complete DGLAP analysis of the polarized parton
distributions at the NLO accuracy was performed for the
first time in one of the MS factorization schemes. The
splitting functions describing the evolution of the non-
singlet components and the singlet ones were first derived
in [17,18]. They are listed in detail in the appendix of [19].

The NLO DGLAP evolution of the parton distribu-
tions depends on the factorization scheme applied. In gen-
eral, the scheme dependence disappears in physical ob-
servables, e.g. in the structure function, g1(x, Q2), which
is a combination of parton distributions convoluted with
the Wilson coefficient functions, ∆Cq,g(x):

g1(x, Q2) =
1
2

Nf∑
q=1

e2
q

{
(∆Cq ⊗ (∆q + ∆q̄)) (x, Q2)

+(2∆Cg ⊗ ∆g)(x, Q2)
}

, (6)

where

∆Cq = δ(x − 1) + α̃s(Q2) ∆C(1)
q ,

∆Cg = α̃s(Q2) ∆C(1)
g . (7)

The index (1) denotes that the coefficient functions are
calculated at the NLO accuracy; eq is the quark charge.
The Wilson coefficients were first calculated at the MS
scheme [17]. Here, they were taken from [19].

Sometimes it is convenient to rewrite g1 in terms of
its non-singlet and singlet parton components, ∆qNS and
∆Σ,

g1(x, Q2) =

〈
e2
〉

2

{
∆Cq ⊗ ∆qNS + ∆Cq ⊗ ∆Σ

+2Nf∆Cg ⊗ ∆g
}

, (8)

where ∆qNS =
∑

q

(e2
q/
〈
e2〉 − 1)(∆q + ∆q̄), and

〈
e2〉

=
∑

q

e2
q/Nf .

3 Scheme dependence

It is known that the MS factorization does not specify
a unique scheme but a family of schemes [13, 20]. This
is due to the ambiguities in the renormalization of oper-
ators involving γ5 in n dimensions. In the standard MS
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scheme [17,18] the first moment of the singlet parton dis-
tribution, ∆Σ(Q2), is not conserved. The singlet moments
calculated at different factorization schemes differ by a

term α̃s(Q2)
∫ 1

0
dx∆g(x, Q2) ∼ O(α0

s ), which can be large

even at Q2 → ∞. This is a direct consequence of the axial
anomaly [13,21,22]. Therefore the differences between the
quark moments at different schemes can be quite large,
and this makes the physical interpretation of these mo-
ments difficult.

Transforming to another factorization scheme removes
some of these problems. Following [13,14,20], we introduce
a family of MS-like factorization schemes:(

∆Σ

∆g

)
a

= (δ · Î + α̃s(Q2)Ẑ(a)) ⊗
(

∆Σ

∆g

)
MS

. (9)

This family is labelled by the parameter a. The index MS
refers to the NLO results obtained in [17–19]. The function
δ is the Dirac δ-function, δ(x − 1), Î is the unit matrix.
The matrix Ẑ(a) has the form

Ẑ(a) =

(
0 Z(a)qg

0 0

)
, (10)

where Z(a)qg = Nf [(2x − 1)(a − 1) + 2(1 − x)]. By a
choice of the parameter a, we get a transformation of the
integrated distributions to another factorization scheme.
For instance, at a = 1 we get the JET/CI factorization
scheme [15, 22–24], in which the parton densities are free
of anomalies, and for a = 2 we have the AB factorization
scheme [25].

In the JET/CI scheme all hard effects are absorbed
into the coefficient functions what results in the removal
of the anomalies from the quark densities. In what follows
we will use this scheme so as to test the sensitivity of
our results to the factorization scheme applied. We will
compare the results of the unified evolution obtained with
the JET/CI scheme to those obtained with the standard
MS scheme.

As it was shown by Müller, Teryaev [15] and Cheng
[16], the transformation to the JET/CI scheme from the
MS scheme has the following effect on the splitting func-
tions:

∆PNS
qq,JET − ∆PNS

qq,MS = 0, (11)

∆Pgq,JET − ∆Pgq,MS = 0, (12)

∆P S
qq,JET − ∆P S

qq,MS = α̃s(Q2)Nf A ⊗ ∆Pgq,MS, (13)

∆Pgg,JET − ∆Pgg,MS = −α̃s(Q2)Nf A ⊗ ∆Pgq,MS, (14)

2Nf (∆Pqg,JET − ∆Pqg,MS)

= α̃s(Q2)NfA ⊗
{

∆Pgg,MS − ∆Pqq,MS (15)

− α̃s(Q2)NfA ⊗ ∆Pgq,MS

}
− α̃s(Q2)β0 Nf A/2,

where A(x) = 2(1−x), β0 = 9 at Nf = 3, and the kernels

∆Pij ≡
(
∆P

(0)
ij + α̃s(Q2)∆P

(1)
ij

)
(16)

are defined with the indices (0) and (1) denoting the split-
ting functions calculated at the leading and the next-to
leading accuracy, respectively.

Mueller and Teryaev obtained the analytic form of the
JET/CI kernels at the O(αs) accuracy (NLO) [15]. They
neglected the contributions from the terms of higher or-
ders in αs. However, this does not give a sufficient accuracy
at low x. At low x the logarithms, ln(1/x), are large, and
the proper perturbative expansion should be made in pow-
ers of αm

s lnn(1/x), and not in the powers of αs only. To
prove this, we give the following example. Analyzing the
evolution kernel, 2Nf ∆Pqg,JET, in (15), we found that its
NLO part contains terms of the order αs ln(1/x), whereas
its NNLO part contains the term α2

s ln2(1/x). At low x
these two terms give comparable contributions to the ker-
nel. Therefore neglecting the NNLO contribution which
couples to the large gluon distribution in the evolution
equations may result in large errors during the evolution.

In order to avoid such ambiguities, we decided to cal-
culate analytically the full form of the JET/CI kernels
valid at all orders of αs. To simplify the problem, in (13)–
(15) we restricted to the MS kernels calculated at the LO
accuracy,

∆Pij,MS ≡ ∆P
(0)
ij,MS

. (17)

We then made the appropriate convolutions of ∆Pij,MS
with the transformation kernel, A, and finally got the
JET/CI kernels at the NNLO accuracy,

∆PNS
qq,JET − ∆PNS

qq,MS = 0, (18)

∆Pgq,JET − ∆Pgq,MS = 0, (19)

∆P S
qq,JET − ∆P S

qq,MS = −α̃s(Q2) 2NfCF

× [3(1 − x) + (2 + x) lnx], (20)
∆Pgg,JET − ∆Pgg,MS = α̃s(Q2) 2NfCF

× [3(1 − x) + (2 + x) lnx], (21)
2Nf (∆Pqg,JET − ∆Pqg,MS) = α̃s(Q2)Nf

× {CF [(1 − x)(1 − 4 ln (1 − x) + 2 lnx)]
× CA[(1 − x)(−16 + 4 ln(1 − x)) − 4(2 + x) lnx]}
+
(
α̃s(Q2)

)2
4N2

f CF (22)

×
[
9(x − 1) − (4x + 5) lnx −

(
1 − x

2

)
ln2 x

]
.

This NNLO JET/CI evolution corresponds to the LO evo-
lution at the MS scheme.

The structure function, g1, (cf. (8)) rewritten in terms
of the parton distributions at the JET/CI scheme was

g1(x, Q2) =

〈
e2
〉

2
{
∆qNS,JET(x, Q2)

+ (∆ΣJET − α̃s(Q2) NfA ⊗ ∆gJET)(x, Q2)
}

. (23)

4 Unified evolution equations including
resummation of double logarithms, ln2(1/x)

A complete resummation of the double logarithmic cor-
rections, ln2(1/x), contributing to g1 was performed in [4].
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Those corrections originated from the ladder diagrams and
the non-ladder (“bremsstrahlung”) diagrams [2, 3, 26, 27],
and were summed up with the recursive evolution equa-
tions written for the unintegrated parton distributions, fi

(i = S, NS, g). The integrated parton distributions were
obtained from the unintegrated ones, using the relation
similar to (3):

∆qi(x, Q2) = ∆q
(0)
i (x) (24)

+
∫ W 2

k2
0

dk2

k2 fi

(
x′ = x

(
1 +

k2

Q2

)
, k2
)

,

where the phase-space was extended from Q2 to W 2 =
Q2(1/x − 1) corresponding to the total energy squared
measured in the center-of-mass frame.

In [9] the unified evolution equations for fNS which in-
cluded both the LO DGLAP evolution terms and the dou-
ble logarithms, ln2(1/x), were completed with the NLO
DGLAP terms. In order to avoid double counting the
ln2(1/x) contributions coming from the NLO terms and
the ladder and non-ladder terms in the overlapping re-
gions of the phase-space, subtractions of singularities were
performed within the evolution kernels. We divided the
phase-space of those equations into two regions:
(i) k2

0 < k2 < Q2 and
(ii) Q2 < k2 < Q2/z.

In the region (i) we kept all terms generated by the
(non-ladder) double logarithmic corrections and added
only the regular part of the DGLAP terms, ∆Preg, i.e.
that part which was not singular at z → 0, hence did not
generate any ln2(1/x) contributions. In region (ii) neither
LO nor NLO DGLAP terms appeared, and we had there
only contributions from the ladder and the non-ladder cor-
rections. That procedure was unique, and it used a proven
result of [26,27]: the ln2(1/x) resummation is complete af-
ter including the ladder and the non-ladder contributions.

Following [9], we write the vector equations for the
unintegrated singlet distribution, fS,

fS(x, Q2) = α̃s(Q2)(∆P̂ ⊗ ∆q
(0)
S )(x)

+ α̃s(Q2)
∫ Q2

k2
0

dk2

k2 (∆P̂reg ⊗ fS)(x, k2)

(DGLAP)

+ α̃s(Q2)
4
3

∫ 1

x

dz

z

∫ Q2/z

Q2

dk2

k2 fS

(x

z
, k2
)

(Ladder)

− α̃s(Q2)
∫ 1

x

dz

z

([
F̃8

ω2

]
(z)

G0

2π2

)∫ Q2

k2
0

dk2

k2 fS

(x

z
, k2
)

− α̃s(Q2)
∫ 1

x

dz

z

∫ Q2/z

Q2

dk2

k2

×
([

F̃8

ω2

](
k2

Q2 z

)
G0

2π2

)
fS

(x

z
, k2
)

.

(Non − ladder) (25)

For a detailed form of the kernels, see Appendix A. The
matrices F8 and G0 represent octet partial waves and
color factors respectively. They are described in detail in
Appendix A. The symbol [F̃8/ω2](z) denotes the inverse
Mellin transform of F8/ω2:[

F̃8/ω2
]
(z) =

∫ δ+i∞

δ−i∞

dω

2πi
z−ωF8(ω)/ω2, (26)

with the integration contour located to the right of the
singularities of the function F8(ω)/ω2.

As mentioned above, the procedure of avoiding the
double counting the logarithmic contributions ln2(1/x) is
well defined and unique at the unintegrated parton dis-
tributions. It uses a proven result of [26,27]: the ln2(1/x)
resummation is complete after including the ladder and
the non-ladder contributions.

However, logarithmic corrections are also present at
the Wilson coefficients. They are also generated while in-
tegrating the unintegrated parton distributions, fS,NS,g,
over the extended phase-space, k2 < W 2. In [9] we used
only the regular part of the Wilson quark and gluon co-
efficients to avoid the double counting of those singular
contributions.

However, a detailed analysis shows that there is no
double counting here. Therefore cutting the singular part
of the Wilson coefficients is, in general, not correct. For the
gluon part of g1 the double logarithmic corrections gener-
ated by integrating the fg over k2

0 < k2 < W 2 contribute
to g1 with sign (∼ − ln x) opposite to those present at
the Wilson gluon coefficient (∼ ln x). Cutting the singu-
lar part of the Wilson coefficient may then lead to a wrong
behavior of the g1 obtained at low values of x. To check
this, we made also a dedicated numerical calculation (not
shown).

This problem does not show up while calculating the
quark part of g1. The singular term at the Wilson quark
coefficient, ∆Cq, is ∼ − ln x. It just enhances the singular
contribution coming from the integral over the extended
phase-space.

To sum up, in the present analysis we will use the
full form of the quark and the gluon Wilson coefficients,
∆C

(1)
q , ∆C

(1)
g both for the standard DGLAP evolution

and for the unified evolution including the ladder and the
non-ladder terms. The full forms of these coefficients are

∆C(1)
q =

4
3

{
(1 + z2)

(
ln (1 − z)
(1 − z)

)
+

− 3
2

1
(1 − z)+

(27)

+2 + z − 1 + z2

1 − z
ln(z) −

(
9
2

+
π2

3

)
δ(1 − z)

}
,

∆C(1)
g =

1
2

{
(2x − 1)(ln (1 − x) − 1) − 2x lnx

+ lnx + 2(1 − x)
}

; (28)

they were taken from [19]. The symbol ()+ is defined by
the following convolution. A function f(z) convoluted with
a function (g(z))+ gives∫ 1

0
dz f(z) (g(z))+ =

∫ 1

0
dz (f(z) − f(1))g(z). (29)
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5 Results

We numerically solved the evolution equation (25) for the
singlet parton distribution, fS. The NLO DGLAP terms
calculated at the MS scheme were taken from [19].

A simple “flat” input was used as a parameteriza-
tion of the non-perturbative parton distributions at Q2

0 =
1 GeV2:

∆p
(0)
i (x) = Ni(1 − x)ηi , (30)

with ηuv
= ηdv

= 3, ηū = ηs̄ = 7 and ηg = 5. The normal-
ization constants Ni were determined by imposing the LO
Bjorken sum rule on the ∆u

(0)
v −∆d

(0)
v , and requiring that

the first moments of all other distributions are the same
as those determined from the QCD analysis [28]. It was
checked that parametrization (30) combined with the uni-
fied equations gave a reasonable description of the SMC
data on gNS

1 (x, Q2) [10] and on gp
1(x, Q2) [29]. That fit was

also used in [4,30] to study the contribution of the double
logarithmic corrections to the spin structure function of
the proton and to its first moment.

The integrated distribution was then obtained by a
numerical integration of fS:

∆qS(x, Q2) = ∆q
(0)
S (x) (31)

+
∫ W 2

k2
0

dk2

k2 fS

(
x′ = x

(
1 +

k2

Q2

)
, k2
)

,

following (24).
Afterwards, we made a numerical convolution of ∆qS

with the Wilson coefficients ∆Cq, ∆Cg, in (8) in order to
obtain the singlet component of the structure function,
g1, gS

1 . Results for the non-singlet part of g1, gNS
1 , were

obtained, following [9]. They were added to gS
1 . That sum

yielded g1. Figure 1 shows the results.
The predictions for g1 obtained from the unified evo-

lution including NLO DGLAP terms (DL + NLO curve)
are smaller than the predictions for g1 obtained from the
pure NLO DGLAP evolution (NLO curve). This relation
corresponds to the relation between the DL+LO and LO
curves. This confirms that at low x the unified evolution
is more singular than the standard DGLAP evolution, i.e.
the DGLAP evolution may be incomplete at low x.

We made a similar observation for the gluon distribu-
tion, ∆g. This distribution obtained from the DL + NLO
evolution was much larger than the distribution with the
standard NLO evolution. Moreover, the gluon distribu-
tions described by DL + NLO and DL + LO curves were
comparable. This shows that the unified evolution of ∆g
is driven through the ladder and non-ladder terms which
are more singular at low x than the DGLAP ones.

In order to check the sensitivity of our results to the
factorization scheme applied, we then introduced the
DGLAP terms at the JET/CI scheme into the evolution
equations. The JET/CI kernels at the NNLO accuracy
were obtained from the standard MS DGLAP kernels at
the LO accuracy. We transformed the input (30) into the
input appropriate for the JET/CI scheme, according to
the transformation rule between those schemes (9), ∆ΣJ

= ∆ΣMS + α̃s(Q2)NfA ⊗ ∆g, where ∆g = ∆gJ = ∆gMS.
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Fig. 1a,b. Proton structure function gp
1 a and gluon distri-

bution ∆g b plotted as a function of x at the fixed value
Q2 = 10 GeV2. The NLO DGLAP evolution was included in
the unified evolution at the MS factorization scheme. The thick
solid line (DL + NLO) shows the results obtained by (i) the nu-
merical solving (25) for fS with the input given (thick dotted
line), (ii) the numerical integration of fS performed in order to
obtain ∆qS, ∆g and for gp

1 (iii) the numerical convolution of
∆qS, ∆g with the Wilson coefficient functions ((8), (27) and
(28)). The thick dashed line (NLO) shows the NLO DGLAP
evolution of the input. Thin lines correspond to the results:
from the ln2(1/x) resummation including DGLAP terms at
the LO accuracy (solid line, DL + LO), and from the pure LO
DGLAP evolution (dashed line; LO)

After numerical solving (25) and deriving the ∆qS,
∆qNS, we got the independent predictions for g1 at the
JET/CI scheme, which corresponded to the LO DGLAP
results at the MS scheme. Figure 2 shows the results.

Including the DL corrections (the ladder and non-
ladder terms) into the evolution equations at the JET
scheme resulted in a significant enhancement of the magni-
tude of g1 predicted (DL + NNLO (JET) curve) as com-
pared to the JET DGLAP results (NNLO (JET)) and
even to the DL + LO results at the MS scheme. The DL
kernels coupled to the singlet gave large and negative con-
tributions to fS at low x which added to the negative con-
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Fig. 2a,b. Proton structure function gp
1 a and gluon distribu-

tion ∆g b plotted as a function of x at the fixed Q2 = 10 GeV2.
The NNLO DGLAP evolution was included in the unified evo-
lution at the JET factorization scheme. The thick solid line
(DL + NNLO (JET)) shows the results obtained by (i) nu-
merically solving (25) for fS with the input given (thick dotted
line) and (ii) the numerical integration of fS performed in or-
der to obtain ∆qS, ∆g. The thick dashed line (NNLO (JET))
shows the NNLO DGLAP evolution of the input at the JET
scheme. Thin lines correspond to the results from the ln2(1/x)
resummation including DGLAP terms at the LO accuracy at
the MS scheme (solid line, DL + LO (MS)), and from the pure
LO DGLAP evolution at the MS scheme (dashed line; LO
(MS))

tributions from the JET/CI kernels. Since they were both
negative, there were no cancellations between those two
contributions. That lead to the enhancement observed.

The results for the gluon distributions are similar to
the MS scheme. The gluon distribution, ∆g, obtained with
the unified evolution including the JET/CI kernels is dom-
inated by the contribution of the ladder and non-ladder
terms which are more singular at low x than the DGLAP
ones.

In order to check the accuracy of the JET/CI evolu-
tion, we made the following tests. We got independent pre-
dictions for g1 and ∆g from the NNLO DGLAP evolution

at the JET/CI scheme and from the LO DGLAP evolu-
tion at the MS scheme. In both cases the corresponding
curves, NNLO (JET) and LO (MS), overlapped (Fig. 2).

Finally, we checked that our results on g1 and ∆g ob-
tained at LO accuracy are in agreement with the corre-
sponding results of [4].

6 Conclusions

We calculated the nucleon structure function, g1, using
the unified evolution equations written for the singlet and
the non-singlet parton distributions contributing to g1.
These equations incorporated both the terms describing
the NLO DGLAP evolution and the terms which con-
tributed to the ln2(1/x) resummation. Subtractions from
the evolution kernels were performed so as to avoid dou-
ble counting the ln2(1/x) terms coming from the NLO
DGLAP and from the ladder and non-ladder terms in the
overlapping regions of the phase-space. The sensitivity of
the results to the factorization scheme applied was tested
by introducing the NLO DGLAP terms in two different
schemes into the evolution equations.

In both schemes we got an enhancement of the magni-
tude of g1 and ∆g obtained with the unified evolution as
compared to the pure DGLAP results. This enhancement
was significant for g1 calculated at the JET/CI factoriza-
tion scheme. The behavior of the gluon distribution with
the unified evolution at low x was clearly dominated by
the large contribution of the ladder and non-ladder terms.

We noticed that the singularities at low x generated
during the integration of the unintegrated parton distri-
butions over the extended phase-space (k2 < W 2) did not
reproduce the singularities present at the Wilson coeffi-
cients. Therefore there is no risk of double counting these
singular contributions while calculating g1.

We also discussed and showed possible ambiguities,
when introducing the DGLAP evolution in different fac-
torization schemes into the unified evolution equations.
They are due to the large contributions from lnm x which
require making a perturbative expansion of the kernels in
powers of αn

s lnm x and not in powers of αs only.
To sum up, our observations suggest that the standard

DGLAP evolution is not complete at low x, where the
effects of the ln2(x) resummation are large and therefore
cannot be neglected.
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Appendix A

Here a brief description of the evolution kernels of (25) is
given. The DGLAP kernels were taken from [19]. The full
DGLAP kernel ∆P includes both the LO and NLO terms:

∆P = ∆P (0) + α̃s(Q2) ∆P (1). (32)

Only the regular part of the full kernel is included into the
homogeneous term,

α̃s(Q2)
∫ Q2

k2
0

dk2

k2 (∆Preg ⊗ fNS)(x, k2),

appearing in (25). This is to avoid double counting the log-
arithmic contributions coming from the NLO terms and
the non-ladder terms in the region of the phase-space,
k2
0 < k2 < Q2.

Ladder kernels corresponding to the LO DGLAP ker-
nels at the longitudinal momentum transfer, z = 0 [4]
generate the double logarithmic corrections in the region
of Q2 < k2 < Q2/z.

Non-ladder kernels were obtained in [4] from the in-
frared evolution equations written for the singlet partial
waves F0, F8 [2,3,26,27]. In [4] we noticed that extending
the kernel of the double logarithmic evolution equations
from the ladder one,

α̃s(Q2)∆Pqq/ω, (33)

to the modified one,

α̃s(Q2)
(
∆Pqq/ω − (F8(ω)G0)qq/(2π2ω2)

)
, (34)

gave a proper anomalous dimension as derived from the
infrared evolution equations.

The matrix G0 contained color factors resulting from
attaching the soft gluon to the external legs of the scat-
tering amplitude:

G0 =

(
N2−1
2N 0
0 N

)
, (35)

where N was the number of colors.
Further, it was checked that the Born approximation

of F8,

FBorn
8 (ω) ≈ 8π2α̃s(Q2)

M8

ω
, (36)

gave accurate results for the DL evolution. The matrix
M8 was a splitting function matrix in the color octet t-
channel:

M8 =

(
− 1

2N −Nf

2
N 2N

)
. (37)

The inverse Mellin transform of FBorn
8 (ω) then reads

[
F̃Born

8

ω2

]
(z) = 4π2α̃s(Q2)M8 ln2(z). (38)

The evolution equation (25) includes the non-ladder
corrections in the Born approximation (38).
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